
Chapter 5

Cognitive Analytics: Going
Beyond Big Data Analytics
and Machine Learning

V.N. Gudivada*,1, M.T. Irfan†, E. Fathi* and D.L. Rao*
*East Carolina University, Greenville, NC, United States
†Bowdoin College, Brunswick, ME, United States
1Corresponding author: e-mail: gudivadav15@ecu.edu

ABSTRACT
This chapter defines analytics and traces its evolution from its origin in 1988 to its cur-
rent stage—cognitive analytics. We discuss types of learning and describe classes of
machine learning algorithms. Given this backdrop, we propose a reference architecture
for cognitive analytics and indicate ways to implement the architecture. A few cognitive
analytics applications are briefly described. The chapter concludes by indicating current
trends and future research direction.

Keywords: Cognitive analytics, Text analytics, Learning analytics, Educational data
mining, Cognitive systems, Cognitive computing, Personalized learning, Data science,
Machine learning, Big data analytics, Business analytics

1 INTRODUCTION

Cognitive computing is a computational environment which is comprised of
(1) a high-performance computing infrastructure powered by special proces-
sors such as multicore CPUs, GPUs, TPUs, and neuromorphic chips; (2) a
software development environment with intrinsic support for parallel and
distributed computing, and powered by the underlying computing infrastruc-
ture; (3) software libraries and machine learning algorithms for extracting
information and knowledge from unstructured data sources; (4) a data analyt-
ics environment whose processes and algorithms mimic human cognitive pro-
cesses; and (5) query languages and APIs for accessing the services of the
cognitive computing environment. We have defined cognitive computing in
terms of its functions, since it is not easy to define it precisely and completely
by other methods. Cognitive analytics draws upon the cognitive computing

Handbook of Statistics, Vol. 35. http://dx.doi.org/10.1016/bs.host.2016.07.010

© 2016 Elsevier B.V. All rights reserved. 169

http://dx.doi.org/10.1016/bs.host.2016.07.010


environment to generate actionable insights by analyzing diverse heteroge-
neous data sources using cognitive models that the human brain employs.

Classical symbolic and rule-based approaches to problems such as
machine translation and speech-to-speech translation are being superseded
by statistical learning approaches. For example, consider the problem of
recognizing handwritten digits. Rule-based approaches entail developing a
number of rules which aim to explicitly capture ways to write digits by differ-
ent users. This results in too many rules. Furthermore, additional rules are
needed to accommodate new users who might write a digit differently from
the ways that were reflected in the current rule set. In contrast, artificial neural
network (ANN) approaches use several small pieces of evidence in the form
of features and combine them to produce higher-level features. ANN
approaches are more robust as they perform better with data which is not seen
in the training phase.

The ubiquity of big data (Gudivada et al., 2015a), abundant computing
power, and the resurgence of neural network algorithms are providing scal-
able solutions to several difficult problems. The performance of newer
approaches to problems that have been considered difficult for computers
such as finding objects in images and classifying images rival human perfor-
mance. For example, in the ImageNet Large-Scale Visual Recognition Chal-
lenge (Russakovsky et al., 2015), the error rate for some algorithms for
detecting objects in video and scene classification is as low as 6%, whereas
the error rate for humans is 5%. In another study with deep-learning algo-
rithms (Goodfellow et al., 2014), Google reports 99.8% accuracy in recogniz-
ing CAPTCHA images on the hardest category of reCAPTCHA dataset. In
another study at Facebook on the classification of images, Taigman et al.
(2014) achieved an accuracy of 97.35% on the Labeled Faces in the Wild
dataset using a nine-layer deep neural network. Finally, Lake et al. (2015)
describe an approach called Bayesian Program Learning, which is used to
recognize 1623 handwritten character sets from 50 languages with only a lim-
ited training. Though the above problems are diverse, deep neural network
algorithms perform exceptionally well in all these domains.

The above approaches coupled with advances in information retrieval, nat-
ural language understanding (Gudivada et al., 2015b), artificial intelligence
(AI), and machine learning are helping to usher in a new paradigm for strate-
gic decision making. The term data analytics when used in a generic sense
refers to any actionable information that results from computational analysis
of data using mathematical and statistical methods. Data analytics is an inter-
disciplinary domain encompassing mathematics, statistics, and computer sci-
ence. Implicitly, there is a domain associated with data analytics. The
domain provides the data for analysis. The primary goal of data analytics is
to gain insights into a process or problem so that the latter can be improved
or solved. In other words, analytics is a data-driven approach to decision
making and problem solving.

170 SECTION B Complex Analytics and Machine Learning



Though certain types of analytics are common across various application
domains, they tend to vary significantly from domain to another. This has
led to the proliferation of names such as business analytics, text analytics,
image analytics, video analytics, graph analytics, spatial analytics, visual ana-
lytics, and cognitive analytics. However, irrespective of the domain, data ana-
lytics is comprised of three components: data acquisition and loading,
methods and algorithms, and a computational platform that implicitly embo-
dies workflows and best practices. The data acquisition and loading compo-
nents enable the preparation of input data and loading it into the
computational platform. Various algorithms and approaches for data analysis
are provided by the methods and algorithms component. Lastly, the computa-
tional platform brings everything together as a system and provides interfaces
for users and other applications to interact with it.

From a functional perspective, there are three categories of data analytics:
descriptive, prescriptive, and predictive. Descriptive analytics provides a
dashboard view of the current state of a system or process. It uses descriptive
statistics and machine learning algorithms to provide insight into a system.
The insight often reveals, in a process, for example, various steps in the pro-
cess, how the steps are sequenced, what type of resources are consumed, and
how much time is spent in each process. As another example, readability of
English texts is determined by text analytics such as the Fry readability for-
mula, Automated Readability Index, Flesch-Kincaid, Gunning-Fog, Coleman-
Liau Index, and SMOG Index. Software metrics and measurements are analyt-
ics used to characterize properties of software. Such metrics include the number
of classes, number of methods per class, depth of inheritance tree, number of
interfaces, and total lines of code.

Prescriptive analytics is a natural outcome of descriptive analytics. It sug-
gests ways to improve a current process or system using simulation and
optimization algorithms. In the case of software metrics and measurements,
prescriptive analytics specifies a range of values for each measurement such
as bounds for number of methods in a class. Furthermore, it specifies refactor-
ing techniques if a measurement is not within the specified range.

Predictive analytics enables answering “what-if” questions by building
predictive models using inferential statistics and forecasting techniques. It
enables organizations to make data-driven strategic decisions. Predictive
models are built using the operational and historical data. They extract asso-
ciations and other implicit relationships in the data to build the models. Vari-
ous regression models such as linear, logistic, Lasso, ridge, Cox proportional
hazards, and Bayesian are widely used. Logic regression, for example, is used
in clinical trials and fraud detection to associate a probability with a binary
outcome.

Like cognitive computing, cognitive analytics is pursued from two com-
plementary perspectives. The first is driven by the computer science research-
ers in both industry and academia. Advances in big data, cloud computing,

Cognitive Analytics Chapter 5 171



natural language understanding, and machine learning are enabling extraction
of knowledge from vast repositories of unstructured data such as natural lan-
guage text, images, video, and audio. From this group’s perspective, the
knowledge extracted from the unstructured data coupled with statistical infer-
ence and reasoning distinguishes cognitive analytics from business analytics.
The second perspective is advanced by cognitive and neuroscience research-
ers. They employ theories of mind, functional areas of the brain, and cognitive
models and processes. For example, an approach in this class might gather
analytics about a cognitive process to validate the cognitive model as well
as to improve the model (Chakraborty et al., 2014).

1.1 Chapter Organization

The overarching goal for this chapter is to present a unified approach to the
emerging area of cognitive analytics. More specifically, in Section 2, we trace
the evolution of data analytics and discuss central issues. Types of learning
used in cognitive analytics are described at a conceptual level in Section 3.
In Section 4, we discuss the following classes of machine learning algorithms:
logistic regression, decision trees, support vector machines (SVMs), Bayesian
networks (BNs), neural networks, and deep learning. This section also
includes a discussion on machine learning frameworks and libraries.

We propose a reference architecture called Cognalytics for cognitive ana-
lytics in Section 5. This section also indicates how this architecture can be
implemented using open source tools. Section 6 presents applications of
cognitive analytics including learning analytics (LA), personalized learning,
cognitive businesses, brain–computer interfaces (BCIs), and assistive technol-
ogies. Cognitive analytics trends and future research directions are described
in Section 7. Section 8 concludes the chapter.

2 EVOLUTION OF ANALYTICS AND CORE THEMES

AI is a subfield of computer science and machine learning is a major area
within AI. The recent emergence of big data and cloud computing created
AI renaissance. The attendant media coverage of machine learning is making
the latter a household name. This is also creating confusion and propagation
of misinformation. In blogs and other self-published forums, some authors
have declared AI and Computer Science as two distinct disciplines, likewise,
AI and machine learning. The scope and the meaning of the term analytics are
being reinvented.

You cannot manage what you do not measure is an old adage from the
management world that is still true today in most organizations and academic
disciplines. At the core of analytics are data, mathematical and statistical
models built using this data. The types of data needed and the type of proces-
sing performed, and the variety of models built varies. The models are used

172 SECTION B Complex Analytics and Machine Learning



for a broad range of purposes under the umbrella terms descriptive analytics,
prescriptive analytics, and predictive analytics. AI, machine learning,
distributed computing, and high-performance computing comprise the compu-
tational infrastructure to manage data and enable model building.

2.1 Multiple Perspectives

There exists multiple perspective on analytics. The Computer Science per-
spective is driven by technical considerations related to storing, managing,
and querying data. In the early days, there was limited support for analysis.
The business perspective views analytics from an organizational level and
focuses on actionable insights into data. Visual analytics is a new area of ana-
lytics whose goal is analytical reasoning through interactive visual interfaces.
Even more recently, other terms such as educational data mining (EDM), LA,
and cognitive analytics have emerged.

Academia has responded to this unprecedented interest in analytics by cre-
ating new interdisciplinary degree programs primarily at the master’s level.
These programs fall into three categories: (1) programs that have the term
analytics somewhere in their name—business analytics, health informatics,
health care informatics, and nursing informatics. Other degree programs such
as econometrics also fall under this category, though they do not explicitly use
the term informatics in the name. These programs are typically administered
or led by noncomputer science departments; (2) programs with names such
as master of science in analytics and master of science in data science. These
programs are typically led by computer science departments; and (3) numer-
ous graduate certificates, tracks, and concentrations in analytics, data mining,
knowledge discovery, machine learning, and big data.

2.2 Analytics Evolution

We trace the evolution of analytics from a Computer Science perspective as
shown in Fig. 1. Basic analytics functions were part of the relational database
management systems (RDBMS) from their early years. RDBMS served as
operational databases for conducting day-to-day business transactions—
online transaction processing (OLTP). Basic functions for descriptive statis-
tics were provided. In subsequent years, more sophisticated functions were
introduced under the name Statistics & SQL Analytics. They included func-
tions for ranking of results, moving and cumulative aggregating values over
a range of rows, lag and lead to access data from preceding and following
rows, descriptive statistics, correlations, and linear regression. In the early
days of RDBMS, analytic functions were implemented outside of the RDBMS
system. Each analytic function was implemented by a standalone piece of
code which made code optimization across RDBMS and analytic functions
difficult. Recently, there have been efforts in implementing analytic functions
within the database (Feng et al., 2012).

Cognitive Analytics Chapter 5 173



2.3 Data Warehouses and Data Marts

The next stage in the evolution is the packaging of more advanced analytic
functions into database systems for data marts and data warehouses. The latter
are developed to help make data-driven strategic decisions—online analytical
processing (OLAP). The terms data mart and data warehouse are sometimes
used incorrectly as synonyms. A data warehouse is a consolidated and centra-
lized repository of data extracted from various operational databases and other
disparate data sources. A data mart, on the other hand, is a subset of a data
warehouse, which targets the needs of a specific department of an organiza-
tion. The data warehouse is like an enterprise database schema, whereas a
data mart is akin to a database view. Data warehouses and data marts are used
for generating customer and compliance reports, score cards, and dashboards.
They are also used for planning, forecasting, and modeling. Extract, Trans-
form, and Load (ETL) is a set of tools and processes that are used to design
and implement data warehouses and data marts.

Both OLTP and some OLAP systems use SQL for performing analytic
functions. SQL operators such as CUBE, ROLLUP, and GROUPING SET

Interactive users

APIs

Data mining/knowledge
discovery

Other data
sources

Machine
learning

OLAP ROLAP MOLAP HOLAP

Data marts and data warehouses

Operational databases

Other data
sources

Visual analytics

APIs

Interactive users

FIG. 1 Evolution of analytics.

174 SECTION B Complex Analytics and Machine Learning



were specifically introduced for data analytics with data warehouses. An
OLAP cube is a multidimensional data array, which is a generalization of a
2D or 3D spreadsheet. It can also be viewed as a logical structure that defines
metadata. MDX (multidimensional expression) is a metadata-based query lan-
guage to query OLAP cubes. Analytic operations on OLAP cube include slice
(creating a new cube with fewer dimensions), dice (creating a new (smaller)
cube by stating specific values for cube dimensions), drill down and drill up
(navigating between the most detailed data level to the summarized data
levels), roll-up (summarizing data along a specific dimension), and pivot
(rotating the cube to view its various dimensions or faces).

2.4 ROLAP, MOLAP, and HOLAP

The third stage in the evolution is the emergence of ROLAP, MOLAP, and
HOLAP. All three classes of cubes organize data in a way to enable efficient
dimensional analysis. The first step in building a cube is to determine dimen-
sions. For a sales department cube, for example, geographic region and indus-
try classification are two dimensions. The next step is to determine the levels
of data aggregation for each dimension. For the geographic region dimension,
data aggregation levels include county, state, region, country, and continent. If
the industry classification is energy utilities, data aggregation levels include
natural gas, coal-powered electricity, wind, and solar.

ROLAP, MOLAP, and HOLAP are extensions of OLAP and are referred
to as OLAP servers. A relational OLAP (ROLAP) server is an interface
between an RDBMS warehouse and OLAP users. It implements navigational
logic for the cube, sends SQL queries for execution to the underlying
warehouse, and provides additional tools and services. ROLAP servers tend
to suffer from performance since data needs to be fetched from the warehouse
on the fly.

In contrast with ROLAP, MOLAP cubes extract data a priori from a ware-
house and store the data in the cube itself. All the calculations are precom-
puted at the time of the cube creation. This contributes to superior
performance but limits the amount of data handled by the MOLAP cube.
Also, MOLAP consumes additional storage space. HOLAP is a hybrid server
which combines best of both ROLAP and MOLAP. HOLAP is scalable like
ROLAP and provides superior performance like MOLAP.

2.5 Data Mining/Knowledge Discovery

Independent of analytics evolution, machine learning (ML) emerged in paral-
lel as a subdiscipline of AI. The majority of machine learning algorithms fall
into the following broad categories: decision trees, associative rule learning,
genetic algorithms, refinement learning, random forest, SVMs, BNs, neural
networks, and deep learning.

Cognitive Analytics Chapter 5 175



The next stage in the analytics evolution is the emergence of data mining
(aka knowledge discovery). Data mining is a synergistic confluence of data-
bases, statistics, AI, and ML. Its goal is to find anomalies and discover hidden
patterns and correlations in data to enable the generation of actionable intelli-
gence. Such intelligence has been used to increase revenues, improve cus-
tomer relationship, reduce operating costs, and make strategic decisions.
A significant task in data mining is locating the relevant data and preparing
the data for ingestion into ML algorithms.

2.6 Visual Analytics

Visual analytics is a relatively new field and developed independently of data
mining. Like data mining, it draws data from several sources including
RDBMS, OLAP cubes, and other sources such as social media. Visual analyt-
ics combines automatic and visual analysis methods with human interactive
exploration. It is based on the premise that combining the quantitative cap-
abilities of computers and the cognitive capabilities of humans leads to pow-
erful ways to create new knowledge. Interactive exploration and visual
manipulation play a central role in visual analytics. Both data mining and
visual analytics systems are available as cloud services. Their functionality
is accessed through APIs.

2.7 Cognitive Analytics

Cognitive analytics is the natural evolution of both data mining and visual ana-
lytics. Cognitive analytics removes humans from the loop and is completely
automated. It is in a formative stage now and there is tremendous interest from
both industry and academia. However, industry is primarily driving both
research and development. Cognitive analytics draws upon advances in several
areas and combines the computing and cognitive science approaches. Fig. 2
shows a functional view of cognitive analytics. Data for cognitive analytics
comes from several sources and includes structured, semistructured, and
unstructured data. Furthermore, it employs knowledge structures such as taxo-
nomies and ontologies to enable reasoning and inference. Extraction of both
low-level features and high-level information is crucial to cognitive analytics.

Shown in the wide rectangle in Fig. 2 are internal components of cognitive
analytics engine. Various knowledge representation structures are needed to
represent and reason with knowledge. An assortment of machine learning
algorithms and inference engines are also needed. The domain cognitive mod-
els capture domain-specific cognitive processes to enable cognitive style
problem solving. The learning and adaptation component improves system
performance by learning from previous interactions with the users.

In contrast with all other analytics, cognitive analytics generates multiple
answers for a question and assigns a degree of confidence to each answer.

176 SECTION B Complex Analytics and Machine Learning



In other words, cognitive analytics uses probabilistic algorithms to come up
with multiple answers with varying degrees of relevance. Noncognitive ana-
lytics, in contrast, employ deterministic algorithms and compute only one
answer for any question. Computing multiple answers requires another com-
ponent, which is labeled Hypothesis Generation & Validation. This compo-
nent is pioneered by IBM and is responsible for generating multiple
hypotheses for a question, gathers evidence for each hypothesis, and using
the evidence scores the relevance of a hypothesis as an answer to the question.

In summary, analytics comes in many forms with varying functional cap-
abilities. Each form reflects the underlying technologies and the characteris-
tics of the domain which propels the form. Regardless of these differences,
we can forge a generic architecture for cognitive computing. Implementation
of such an architecture requires a platform with the following characteristics:
infrastructure for data cleaning, transformations, and fusion; a set of both
deterministic and probabilistic algorithms for computing analytics; a learning
component powered by a domain cognitive model; an array of machine
learning frameworks for hypothesis generation, evidence gathering, and scor-
ing hypotheses; and a high-performance computing system with scalability,
performance, and elasticity. In Section 5, we propose a reference architecture
for cognitive analytics and discuss ways to implement the architecture.

Interactive users

APIs

Cognitive analytics

Knowledge representation Inference

Feature extraction
information extraction Structured data Taxonomies and

ontologies

Semistructured data
unstructured data

Reasoning

Hypothesis generation & validation

Machine learning

Learning & adaptation

Domain cognitive models

FIG. 2 Conceptual view of cognitive analytics.

Cognitive Analytics Chapter 5 177



3 TYPES OF LEARNING

There are two broad classes of learning: supervised and unsupervised. Super-
vised learning involves learning from examples, which is a set of associations
between inputs and outputs. This is akin to how children learn to read and
write—a teacher presents letters of the alphabet and utters the corresponding
sounds. Repeating the process with the same examples will gradually train
students’ biological neural networks to associate symbols with sounds.

Training data is comprised of two parts: input and expected output. Let
(i, o) be an item in the training dataset, which specifies that when the system
is presented with input i, it should output o. The training data is a set of n such
pairs: {(i1, o1), (i2, on), …, (in, on)}. A trained model should work correctly if
the examples in the training set are given to the model again. For example,
given i as input to the trained model, it should produce o as the output.

A reasonable criterion should be defined to measure the error between the
correct output and the outcome generated by the model. The main task of
supervised learning is to minimize the error function. This is similar to how
the teacher corrects students in their initial attempts to read or write, which
gradually minimizes the error function of their biological neural network
model. In addition to the error function, other characteristics of the model
include the number of model parameters and modeling flexibility (Battiti
et al., 2008). Decision trees, neural networks, regression, and Bayesian classi-
fication are examples of supervised learning algorithms.

Unsupervised learning algorithms draw inferences from datasets consist-
ing of just input data without labeled responses. Unsupervised learning infers
a function which describes the hidden structure from unlabeled data. Since the
examples given to the learner are unlabeled, there is no error or reward signal
to evaluate a potential solution. This distinguishes unsupervised learning from
supervised learning and reinforcement learning (see Section 3.2). K-means
clustering, genetic algorithms, and simulated annealing are examples of unsu-
pervised learning algorithms.

For cognitive analytics, unsupervised algorithms have an edge over the
supervised ones. In the big data context, we do not know the patterns in
the data a priori. Furthermore, training data may not be available. Unsuper-
vised learning algorithms are better suited for this scenario. Unsupervised
learning algorithms are also used to automatically generate test data. The
latter is employed to train supervised learning algorithms. For complex
question-answering (Q/A) environments such as the Jeopardy! game, several
hypotheses are generated as candidate answers; evidence is gathered and
used to rank hypotheses. In such Q/A environments, it is advantageous to
use supervised learning to generate some hypotheses and unsupervised
learning to generate additional hypotheses. This approach benefits from both
types of learning and the resulting system performs more robustly. There are
many applications such as real-time fraud detection, continuous security

178 SECTION B Complex Analytics and Machine Learning



vulnerability assessment, computer vision, and natural language understand-
ing for which unsupervised learning suits well.

3.1 Active Learning

Active learning is a special case of semisupervised learning. The key hypoth-
esis of active learning is to allow the learning algorithm to choose the data
from which to learn. In other words, the learning algorithm can interactively
query the user (or another information source) to obtain the desired
output(s) for the input instance on hand. This is expected to result in better
performance as well as less training. The advantage of active learning over
supervised learning is that the former obviates the need for thousands of
labeled instances for training (Settles, 2009). This is especially important
for cognitive analytics where unstructured data is abundant, but has no labels.

Active learning is also called query learning and optimal experimental
design. Algorithms are needed to determine which data points should be
labeled with the expected result. These algorithms are also known as query
strategies and include uncertainty sampling—label only those points for
which the current model is least certain about the correct output; query by
committee–label those points for which the committee disagrees the most,
where the committee is comprised of a variety of models which are trained
on the current labeled data; expected model change—label those points which
would change the current model the most; expected error reduction—label
those points which would reduce the model’s generalization error the most;
and many more.

3.2 Reinforcement Learning

Humans and theoretical systems have various types of learning in common.
Learning by imitating a teacher is the most standard but not the only way of
transferring knowledge. In real life, we notice the outstanding tendency of chil-
dren to try dangerous things such as placing fingers in an electrical receptacle
without a guiding teacher. Depending on the outcome or experience, a child
may repeat this activity again or may never repeat it. This type of learning is
called reinforcement learning. The latter is a form of supervised learning.

Reinforcement learning is inspired by behaviorist psychology. The latter is
concerned with how to take actions by an agent in an unknown environment
to maximize some notion of cumulative rewards. In the example of bicycle
riding, positive rewards can be in the form of admiring friends and negative
ones can be injuries to biological tissues. But after some trials with the goal
of maximizing the positive rewards, learning occurs (i.e., can ride the bicycle
now). Initially, the system is not explicitly trained and receives feedback on
its performance when it is in production. In a sense, reinforcement learning
is trial-and-error learning.

Cognitive Analytics Chapter 5 179



A reinforcement learning environment is formulated as a Markov decision
process (MDP). Many reinforcement algorithms use dynamic programming
techniques. These algorithms do not need the knowledge about the MDP.
When exact methods become infeasible, these algorithms target large MDPs.
The basic reinforcement learning model is comprised of (a) a set of environ-
ment states S, (b) a set of actions A, (c) stochastic rules that govern state tran-
sitions, (d) rules to compute the immediate reward of a transition, and
(e) rules to describe an agent’s observations. Reinforcement learning is espe-
cially well suited to problems which include a long- vs short-term reward
trade-off as in elevator scheduling, and robot control.

Reinforcement learning serves as a theoretical tool for investigating the
principles of autonomous agents learning to act in their environment. The
agents strive to improve their behavior through their interactions and experi-
ences with other agents in the environment. Reinforcement learning has been
used as a practical computational tool for designing and constructing autono-
mous agents for domains such as robotics, combinatorial search problems, and
industrial manufacturing.

3.3 Ensemble Learning

Ensemble learning is based on multiple learning models, which are strategi-
cally generated, and optimally combined for solving problems such as classi-
fication (Polikar, 2009). The idea behind this is that two minds are better than
one. Also, to make strategic decisions, we solicit input from multiple sources
and combine or rank the sources. An ensemble itself is a supervised learning
algorithm. Ensemble learning systems are also called multiple classifier
systems.

Ensemble algorithms yield better results if there are significant differences
or diversity among the models. For example, more random decision trees lead
to a stronger ensemble than entropy-reducing decision trees. However, select-
ing a range of strong learning algorithms, though they may significantly
diverge, is the key for good performance. Common types of ensembles
include (a) Bayes optimal classifier—is an ensemble of all the hypotheses
in the hypothesis space, (b) Bayesian parameter averaging—approximate the
Bayes Optimal Classifier by sampling hypotheses from the hypothesis space
and combining them using Bayes’ rule, (c) Bootstrap aggregating (bagging)—
building multiple models, typically of the same kind, from different subsamples
of the training dataset, (d) Boosting—building multiple models, typically of the
same type, each model learns to fix the prediction errors of a prior model in the
chain, (e) Stacking—building multiple models, typically of differing types, and
having a supervisor model that learns how to best combine the predictions of
the primary models, and (f ) Bucket of models—a model selection algorithm
is used to choose the best model for each problem, and the model selection is
based on cross-validation.

180 SECTION B Complex Analytics and Machine Learning



4 MACHINE LEARNING ALGORITHMS

In this section, we review, compare, and contrast several standard machine
learning (ML) algorithms that have been widely used in cognitive analytics.
Before we delve into the specifics of the algorithms, we discuss considera-
tions that are common to machine learning algorithms in general.

Input, output, and model: The input dataset to a machine learning algo-
rithm is usually composed of many rows, where each row is called an exam-
ple. Each example represents one data point and is composed of multiple
feature values and optionally some target values. All feature values of an
example collectively form a feature vector. All the examples in the dataset
usually have the same number of elements in their feature vectors and also
the same number of target values. The feature vector gives a quantitative
representation of the example in terms of its features. Finding “good” fea-
tures is extremely important and is more of an art than science. The target
values, if present, ascribe a labeling to the example. The two mainstream
classes of machine learning algorithms—supervised and unsupervised (see
Section 3)—differ due to the presence or absence of the target values in an
input dataset. The output of a machine learning algorithm is concerned with
predicting the target values for a new feature vector.

The most challenging part of a machine learning algorithm is choosing an
underlying model for mapping feature vectors to target values. These models
are usually predictive and very rarely are explanatory. The models also have
parameters that must be instantiated using the input dataset, and this process
is called learning. The difficulty in choosing a model stems from the fact that
often an infinite number of candidate models exist, even if the class of models
is restricted. Choosing a model from the candidate set involves a balancing act
which we discuss next.

Classification vs regression: We use the terms target values and labels
interchangeably. A classification problem involves assigning a class label
for a given feature vector. For example, an email message is classified as
spam or not spam. The terms spam and not spam are the class labels. In other
words, the output is a (class) label. In other examples such as weather predic-
tion, the target value is a scalar value—the probability of a weather event.
Target values can also be vectors.

Based on the type of target values desired, a machine learning algorithm
deals with either a classification problem or a regression problem. The main
difference between the two lies in a discrete vs continuous range of target
values. In a classification problem, there are two or more discrete classes.
Each example belongs to one of these classes. In a large majority of classifi-
cation problems, the class labeling of the input examples is specified. The
main objective of a classification algorithm is to accurately predict class
labels for previously unseen examples. Classification problems of this type
where the input examples are labeled fall into the supervised learning

Cognitive Analytics Chapter 5 181



category (see Section 3). In contrast, unsupervised classification problems
start with unlabeled input examples. The job of a classification algorithm in
this case is to predict which examples belong to the same class. The interpre-
tation of the classes in the unsupervised classification scenario is provided by
human domain experts. Regression problems share the same problem struc-
ture as classification problems, with the key difference that the target values
are no longer discrete labels.

Measuring predictive performance: Prediction is the prime goal of
machine learning algorithms in general. Therefore, the algorithms are evalu-
ated in terms of their predictive performance. Several technical issues arise
while measuring the predictive performance, which are referred to as overfit-
ting and underfitting.

Consider a supervised classification problem, where a set of labeled exam-
ples are available in the input dataset. Following is a standard mechanism for
applying a machine learning algorithm to the dataset. First, the input dataset is
partitioned into three nonoverlapping subsets—training, validation, and test.
The size of these three sets is a design choice. The training set is used during
the training phase to help instantiate the parameters of the model so that the
model predicts well. How well the model predicts is measured using the vali-
dation set. The latter provides a set of examples that the algorithm has not
seen during the training phase and is used to select a model that may not per-
form the best with respect to the training set but performs very well with
respect to previously unseen examples. There is an important reason for mea-
suring the accuracy of the model using the validation set instead of the train-
ing set. Imagine that the model does a perfect job predicting target values
given feature vectors of examples in the training set.

On the surface, it may seem like perfect learning. However, it could very
well be the case that the model simply “memorized” the training examples. In
that case, given a previously unseen example, the model will most likely per-
form poorly. This is known as overfitting. Therefore, the main goal of the vali-
dation set is to prevent overfitting by choosing a model that may not be perfect
with respect to the training examples, but does the best job when faced with
unseen examples. In the last phase, the test set is used to measure the accuracy
of the algorithm, which can differ from training and validation accuracies. Note
that the test set is used only for unbiased evaluation of the model.

Underfitting is the opposite of overfitting. Underfitting means that the
model is not sophisticated enough to capture the richness of the data. Large
error margins for both the training and validation sets indicate underfitting,
while very low error margin for the training set and very high error margin
for the validation set indicate overfitting. Both overfitting and underfitting
are undesirable and one of the challenges of machine learning lies in finding
the sweet spot between them.

The subsequent discussion in this section will primarily focus on super-
vised classification problems, which are most prevalent in the real world.

182 SECTION B Complex Analytics and Machine Learning



The reader may consult Murphy’s book (2012) for a complete coverage of
machine learning algorithms.

4.1 Logistic Regression

Logistic regression is essentially a classification algorithm. The word
“regression” in its name comes from its close sister in the regression domain
known as linear regression. Given that the classes are discrete in supervised
classification problems, the goal for the algorithms is to find the decision
boundaries among the classes. Decision boundaries separate examples of
one class from another. Depending on the problem instance, decision bound-
aries may be complex and nonlinear in geometric shape. In general, different
machine learning algorithms have different assumptions regarding the shape
of decision boundaries. In the case of logistic regression, the assumption is
that decision boundaries are linear. That is, they are hyperplanes in the high-
dimensional feature space, where the dimension of the feature space is simply
determined by the number of elements in the feature vector of a training
example.

The logistic regression model parameters are roughly the weights for the
features. Each weighted feature vector is mapped to a value between 0 and
1 via the S-shaped logistic function. This value is interpreted as the probabil-
ity of an example belonging to a particular class. The learning algorithm tunes
the weights in order to correctly classify the training examples. The issue of
avoiding overfitting inevitably arises here. The gradient descent method and
several variants of it are popular for tuning the weights. Once the weights
are chosen, the logistic function is applied to any unseen example to obtain
the probability of it belonging to a class.

Due to the simplistic assumption of linear decision boundaries, logistic
regression is often times the first go-to algorithm for classification problems.
Also, because of the linear, noncomplex decision boundaries, logistic regres-
sion is known to be less prone to overfitting. Intuitively, overfitting occurs
when we try to correctly classify every single training example by arbitrarily
wiggling the decision boundary. Additionally, gradient descent typically
works very fast and thus makes the training phase of logistic regression quick.
All of these advantages justify the popular application of logistic regression to
a variety of classification problems. On the down side, however, the simplistic
modeling assumptions may lead to underfitting for rich and complex datasets.

Logistic regression has been used in a variety of application areas.
Honorio and Ortiz (2015) has used it to learn the structure and parameters
of a social network model that captures the strategic behavior of individuals.
The model has been used to find the most influential individuals in a network
(Irfan and Ortiz, 2011, 2014). Logistic regression has also been used in GIS
(Ayalew and Yamagishi, 2005; Lee, 2005), email spam filtering (Chang
et al., 2008), and other problems within natural language processing

Cognitive Analytics Chapter 5 183



(Jurafsky and Martin, 2009; Nadkarni et al., 2011), speech recognition
(Jurafsky and Martin, 2009), finance (Laitinen and Laitinen, 2001; Maher
and Sen, 1997), and the broader domain of pattern recognition (Bishop, 2006).

4.2 Decision Trees

The Classification and Regression Tree (CART) method was originally pre-
sented by Breiman et al. (1984) during the 1980s. This has led to tremendous
interest in decision tree learning. In the supervised classification setting, the
objective of decision tree learning is to compute a special type of tree that
can classify examples to classes. The notions of training, validation, and test
sets as well as overfitting vs underfitting issues apply for decision trees too.
The underlying model in decision tree learning is a tree in graph-theoretic
sense. However, we must also recognize a stylized control flow that is super-
imposed on the tree structure. Each internal node of the tree, including the
root, asks a decision-type question. Based on the answer for an example, we
next traverse one of the children of that internal node. Once we reach a leaf
node, we are certain to know the classification of the example according to
the decision tree, since each leaf node is annotated with a class label.

In addition to CART, there are many other learning algorithms for finding
the “best” tree for a classification problem. Most modern algorithms like Iter-
ative Dichotomiser 3 (ID3) (Quinlan, 1986) and its successors C4.5 (Quinlan,
2014) and C5 (Quinlan, 2016) use information theoretic measures, such as
entropy, to learn a tree. Entropy can be thought of as a measure of uncertainty.
Initially, the whole training set, consisting of examples of different classes,
will have a very high entropy measure. ID3 and its successors repeatedly par-
tition the training set in order to reduce the sum of the entropy measures of the
partitions. Usually, a greedy strategy is employed for this purpose. The algo-
rithm chooses a feature and partitions the training set based on that feature.
The feature is chosen with the goal of minimizing the sum of the entropy mea-
sures across the resulting partitions. The same procedure is recursed on each
partition, unless all the examples in that partition belong to the same class.

One big advantage of decision tree learning over other learning methods
such as logistic regression is that it can capture more complex decision bound-
aries. Decision tree learning is suitable for datasets that are not linearly
separable—there exists no hyperplane that separates out examples of two dif-
ferent classes. The ability of decision trees to capture complex decision
boundaries is sometimes its own pitfall, since this can lead to overfitting
unless certain other techniques like “pruning the tree” is applied.

A few other advantages have made decision trees popular. First, they
often lead to a clear visualization of how the machine learning algorithm per-
forms classification. Second, the training phase is usually fast and scalable to
large-scale data. Lastly, decision trees have been widely used in various
ensemble learning methods, such as AdaBoost (Freund and Schapire, 1995;

184 SECTION B Complex Analytics and Machine Learning



Freund et al., 1999) and random forests (Breiman, 2001; Ho, 1995). Random
forests belong to a broader umbrella of machine learning techniques known as
bagging. Bagging techniques are especially geared for tackling overfitting. In
random forests, multiple decision trees are learned, which collectively build a
graph-theoretic forest. A new feature vector is classified differently by differ-
ent decision trees in the forest. These individual classifications are aggregated
to output the final classification.

4.3 Support Vector Machine

SVM is one of the most widely applicable machine learning algorithms (Bell,
2014; Shalev-Shwartz and Ben-David, 2014). Since Vapnik and Chervonenkis
presented SVM during the 1960s, there has been a tremendous amount of
work extending it in multiple directions. We will present the key idea behind
SVM and its advantages. Sch€olkopf’s book (1999) is a comprehensive refer-
ence on this topic.

Consider a restricted classification setting where the training set consists
of only examples that belong to two classes, and the examples are linearly
separable. Because of linear separability assumption, there exist hyperplanes
that separate out the examples of the two different classes. In fact, there exist
an infinite number of such hyperplanes. The central idea in SVM is to
choose that particular hyperplane which sits “right in the middle” in between
the examples of the two classes. Mathematically speaking, SVM chooses the
hyperplane that maximizes the minimum distance between that hyperplane
and all the examples. In other words, the hyperplane is equidistant from
the examples of the two classes that are closest to it. In SVM terminology,
two times the distance between the hyperplane and the points closest to it is
known as the margin. As a result, SVM is also known as a maximum margin
classifier. Maximizing the margin, or equivalently selecting that particular
hyperplane in between the examples of the two different classes, is extremely
significant. This leads to a good generalization for classifying previously
unseen examples.

One of the reasons SVM is so widely applicable is that it can be easily
extended to complex instances that are not linearly separable. This is done
by mapping the training examples to a higher-dimensional space where they
become linearly separable in conjunction with the kernel trick (Aizerman
et al., 1964; Boser et al., 1992) to keep computation manageable.

Another reason in favor of its applicability is a subtle issue that accounts
for the name “support vector.” Not all training examples are equally impor-
tant. In fact, since the decision boundary only depends on the training exam-
ples closest to it, it suffices to define the underlying model of SVM in terms
of only those training examples. Those examples are called support vectors.
Although the original dataset may contain a very large number of examples,
the number of support vectors is usually very small. This makes SVM

Cognitive Analytics Chapter 5 185



amenable to large-scale data, including streaming data. SVM is also memory
efficient for many applications.

SVM algorithms have been successfully used for classifying images in
extremely large repositories such as Instagram. They have also been used to
analyze natural language text and web documents (Tong and Koller, 2001).
In the medical domain, SVMs have been used to classify proteins into their
functional family (Cai et al., 2003).

4.4 Artificial Neural Networks and Deep Learning

ANNs, or simply neural networks, belong to the broader class of biologically
inspired computation. ANNs are modeled after how the neurons in the brain
“fire” and how one neuron’s firing affects other neurons connected to it.
One of the earliest and most influential models of a neuron is attributed to
McCulloch and Pitts (1943), who combined biology and mathematics to
model the firing of a neuron as a threshold function. Subsequently,
Rosenblatt (1958) presented the first algorithm, known as the perceptron algo-
rithm, to learn the parameters of the simplest type of neural networks that can
successfully deal with linearly separable classification problems.

Advances in high-performance computing and algorithmic progress
advanced ANNs to address problems where the class boundaries are not line-
arly separable. This led to a further explosion of growth and interest in neural
networks during the 1980s. In fact, many considered ANNs as a “one size fits
all” framework, which ultimately created its own downfall. In particular,
Geman et al. (1992) showed that neural networks are prone to overfitting
and underfitting problems. Furthermore, they demonstrated that for a neural
network to be effective for various problem instances, it needs to be complex
and enough data is needed to effect good learning.

There are many variants of neural networks, but we will discuss the most
prevalent one known as feed-forward neural network. A feed-forward network
consists of neurons placed in multiple layers. The first layer is known as the
input layer, and the last layer the output layer. All the layers in between input
and output layers are hidden layers. The outputs of neurons in one layer are
fed as inputs to the neurons of the next layer. The parameters of the model
are the weights of the connections between neurons of two consecutive layers
and a threshold value for each neuron. The weights indicate connection
strengths and the threshold value determines whether or not a neuron fires.

Given a training dataset, the neural network is designed in such a way that
the number of neurons in the input layer is equal to the number of features.
Also, the number of neurons in the output layer is equal to the number of
target values. Apart from these restrictions, there is no hard and fast rule
regarding the number of hidden layers and the number of neurons in a hidden
layer. Often times, these are determined by experimenting with several differ-
ent network architectures and choosing one based on cross-validation

186 SECTION B Complex Analytics and Machine Learning



(Murphy, 2012). There are many algorithms for learning the parameters of a
neural network (Murphy, 2012), but the most influential one is known as
the backpropagation algorithm (Werbos, 1974).

Neural networks have many success stories like handwriting recognition
and stock market prediction. However, due to issues of network complexity
and amount of training data required, enthusiasm about neural networks
somewhat subsided during the 1990s. With incredible advances in high-
performance parallel computing and the emergence of big data (Gudivada
et al., 2015a), neural networks reemerged under a new name—deep learning
(LeCun et al., 2015). The power of deep learning comes from scalability—
the number of hidden layers, and not from new or complex algorithms. Deep-
learning algorithms have been making one breakthrough after another in sev-
eral different areas, including image classification (Krizhevsky et al., 2012),
speech recognition (Hinton et al., 2012), and machine translation (Sutskever
et al., 2014).

Perhaps the primary reason for the popularity of deep learning is auto-
matic feature extraction. Traditionally, features are carefully hand-crafted
by humans. However, it has been shown that for image recognition tasks,
deep learning automatically extracts image features in a hierarchical
fashion—beginning from the edges in the images to higher-level features pro-
gressively (LeCun et al., 2015). This automatic extraction and representation
of features has hugely outperformed many standard features like the well-
known sift features. The latter have been used by the computer vision com-
munity for years. As a result, deep learning has initiated a paradigm shift
in computer vision.

A major drawback of deep neural networks is that they cannot explain
their decisions. From a user perspective, it is an oracle and a blackbox.
Designing critical systems with the blind faith that deep learning will pick
the “right” features is not a sound engineering design principle.

4.5 Bayesian Networks

Probabilistic approaches to real-world problems are omnipresent today. One
of the key challenges in these approaches is the representation of the joint
probability of a set of random variables, whose size is exponential in the num-
ber of random variables. However, most problems show some type of proba-
bilistic structure in the sense that not every random variable is conditionally
dependent on every other random variable. In such cases, we can succinctly
represent the probability structure. Probabilistic graphical models (Koller
and Friedman, 2009) deal with problems where there is a graphical structure
among the random variables in terms of the conditional dependencies. BNs
are probabilistic graphical models where the graph (or network) among the
random variables is a directed acyclic graph (DAG). Each node in the DAG
is a random variable and each directed edge from a node A to a node B

Cognitive Analytics Chapter 5 187



represents A’s direct influence on B. The directed edges may not necessarily
encode causality—in most cases they do not.

In addition to being a data structure for a compact representation of joint
probabilities, a BN also represents conditional independence among its ran-
dom variables. Interestingly, these two representational aspects of BNs are
equivalent. The conditional independence property states: given the nodes that
have a directed edge to a node A, the node A is conditionally independent of
all the nodes that cannot be reached from A via a directed path. A more tech-
nical concept known as d-separation deals with the issue of whether two
nodes are conditionally independent given a third node, based on the graph
structure and irrespective of the actual probability distribution. D-separation
is algorithmically well understood, although in the worst case it takes expo-
nential time in the size of the graph (Koller and Friedman, 2009).

The key machine learning problems in the BN setting are learning the
parameters (i.e., conditional probabilities) given the graph structure and
learning the structure of the graph and the parameters given a probability dis-
tribution. For the former, several well-known techniques such as Maximum
Likelihood and expectation maximization are widely used. The latter problem
is more involved and often times requires searching for a graph structure in
the huge space of all possible graphs. Various optimization techniques are
used for this task.

Today, BNs boast a wide range of practical applications in diverse fields,
such as bioinformatics (Zou and Conzen, 2005), image processing (Mittal,
2007), risk analysis (Weber et al., 2012), and engineering (Heckerman
et al., 1995), to name just a few.

4.6 Libraries and Frameworks

Many libraries and frameworks are available for developing cognitive analyt-
ics applications. TensorFlow is an open source software library from Google
for numerical computation using data flow graphs (Abadi et al., 2016). The
library is optimized for execution on clusters and GPU processors. Among
many other applications, TensorFlow is a deep-learning platform for compu-
tational biologists (Rampasek and Goldenberg, 2016).

Apache Singa is a general purpose, distributed neural platform for training
deep-learning models over large datasets. The supported neural models
include convolutional neural networks, restricted Boltzmann machines, and
recurrent neural networks.

Torch7, Theano, and Caffe are the other deep-learning frameworks which
are widely used. The Torch is a GPU-based scientific computing framework
with wide support for machine learning algorithms. It provides an easy to use
and fast scripting language called LuaJIT, which is implemented using the
C language and CUDA. It comes with a large number of community-developed
packages for computer vision, signal processing, and machine learning.

188 SECTION B Complex Analytics and Machine Learning



Theano is a Python library which is highly suited for large-scale, compu-
tationally intensive scientific investigations. Mathematical expressions on
large multidimensional arrays can be efficiently evaluated. It tightly integrates
with Numpy. Access to the underlying GPU hardware is transparent. Also, it
performs efficient symbolic differentiation. Lastly, extensive unit-testing and
self-verification functions are integrated into Theano, which enables diagnos-
ing several types of errors in code.

Caffe is particularly suitable for convolutional neural networks and pro-
vides options for switching between CPUs and GPUs through configuration
parameters. It has been stated that Caffe can process over 60 million images
per day with a single Nvidia K40 GPU.

Massive Online Analysis (MOA) is a popular framework for data stream
mining. The machine learning algorithms provided by the framework are suit-
able for tasks such as classification, regression, clustering, outlier detection,
concept drift detection, and recommender systems.

MLlib is Apache Spark’s machine learning library. Tasks that can be per-
formed using the MLlib include classification, regression, clustering, collabo-
rative filtering, and dimensionality reduction. mlpack is a C++-based machine
learning library, which can be used through command line as well as C++
classes.

Pattern is a web mining module for the Python programming language. It
features tools for data mining, natural language processing, clustering, net-
work analysis, and visualization. Scikit-learn is another Python framework
for machine learning, which is implemented using NumPy, SciPy, and mat-
plotlib. Using the included machine learning algorithms, tasks such as cluster-
ing, classification, and regression can be accomplished.

Shogun is one of the oldest machine learning libraries, which is written in
C++. However, it provides bindings for other languages such as Java, Python,
C#, Ruby, R, Lua, Octave, and Matlab. Veles is a C++, distributed platform
for developing deep-learning applications. Trained models can be exposed
through REST API. Using Vales, widely recognized neural topologies such
as fully connected, convolutional, and recurrent networks can be trained.
Deeplearning4J, neon, and H2O are other libraries for deep learning.

Mahout is an Apache machine learning project. Mahout library is espe-
cially suited for execution on cluster computers and GPUs. Also, it tightly
integrates with Hadoop Map/Reduce distributed processing framework.
Logistic regression classifier, random forest decision trees, K-means cluster-
ing, and naive Bayes classifier algorithms are available in Mahout. Apache
R project is a sophisticated platform for statistical computing. It features a
comprehensive set of machine learning and visualization algorithms.

Amazon Machine Learning is a cloud-hosted service for creating machine
learning models without knowing the internal details of machine learning
algorithms. This service provides easy access to the data stored in Amazon
S3, Redshift, and RDS. Azure ML Studio is a similar service from Microsoft.

Cognitive Analytics Chapter 5 189



5 COGNITIVE ANALYTICS: A COVETED GOAL

The term cognition refers to how humans acquire and use knowledge through
their senses, learn from interactions and experiences in their environment, and
acquire and improve their ability to perform functions such as walking, talking,
driving a car, and problem solving. It is hypothesized that cognition is enabled
by the higher-level functions of the brain. A cognitive process refers to the spe-
cific steps the brain uses for accomplishing tasks such as perception, planning,
language acquisition, and thinking. Cognitive processes are different from
deterministic algorithms. They elegantly cope with data which is ambiguous,
uncertain, incomplete, and inconsistent using probabilistic algorithms.

A cognitive model is a blueprint for a cognitive process. In other words, a
cognitive model explains a cognitive process. A set of cognitive processes
endows humans’ intelligent behavior. Machine cognition is similar to human
cognition. Machine cognition targets computers to perform tasks at a perfor-
mance level which rivals humans. Cognitive analytics is an emerging area
and is currently going through a formation stage. It is expected to evolve rap-
idly and make its way into many commercial software applications.

A software architecture defines the overall structure of a software applica-
tion and specifies its components and their functional characteristics, as well
as communication among the components. Some architectures are generic
and are used to build a class of software applications, whereas others are spe-
cific to just one application. A cognitive architecture is a supposition about
fixed structures of the mind and interactions among them to endow intelligent
behavior to humans and machines. The means used to realize cognitive archi-
tecture in humans and computers are different. The underlying infrastructure
for human cognition is the mind and brain, whereas algorithms and computers
encompass the infrastructure for machine cognition. Some cognitive architec-
tures are generic enough to serve as a blueprint for multiple cognitive models.
In this section, we describe Cognalytics—a proposed architecture for cogni-
tive analytics—and also discuss ways to implement the architecture.

5.1 Cognalytics: A Reference Architecture for Cognitive
Analytics

Shown in Fig. 3 is Cognalytics, a high-level reference architecture for imple-
menting cognitive analytics. It is a layered architecture and the circled num-
bers on the right denote layer numbers. We use the terms system and
architecture synonymously, and the context should help to elucidate the
intended meaning.

Layer 1 is the physical data layer which stores unstructured, semistruc-
tured, and structured data. It also stores open source taxonomies and ontolo-
gies such as DBpedia and WordNet. Some data in the physical data layer is
static or changes rarely, and other data is dynamic and changes with time.

190 SECTION B Complex Analytics and Machine Learning



This suggests that static data should be physically stored, whereas the
dynamic data should be stored logically. In the latter case, the system knows
the requisite information about how to fetch this data as needed from the
sources. Even the physically stored static data needs to be kept in sync with
their sources. These are optimization issues and are not part of the high-level
architecture. Since the data is large and heterogeneous, suitable database man-
agement systems (DBMS) should be used. They include both relational and
NoSQL databases (Gudivada et al., 2016). Natural language texts are stored
as text corpora.

Extremely large data volumes and attendant compute-intensive processing
require high-performance computing and distributed processing techniques to
meet stringent query latency requirements. Layer 2 addresses this need and is
referred to as the physical hardware layer. Layer 3 provides a virtual machine
and abstractions over layer 2 so that cognitive analytics applications can
effectively leverage the computing power of layer 2. Layer 3 is referred to
as the hardware abstractions layer.

Layer 4 provides data services which are implemented using the abstrac-
tions provided by layer 3. Functions featured by the data services layer range
a broad spectrum from data cleaning, data quality assessment, compression,

Interactive users System admins

Applications

Authorization & entitlements

Knowledge representation

Learning & adaptation

Query parsing Inference Reasoning machine

Domain cognitive models

learning
Results presentation & visualization

Data access APIs, ETL, feature, and information extraction

Data quality, encryption, security, privacy, compression, and provenance services

Parallel and distributed computing—Hadoop Spark

High performance and special procesors

Neuromorphic chips

SQL and NoSQL databases, corpus repositories

GPUsClusters

Journals
Textbooks

Newpapers

Webinars
Podcasts

Social
media

Open and
linked data

Training
data

YouTube &
broadcast

videos

Wikimedia
DBpedia
WordNet

Machine learning chips

Hypothesis generation & validation

System administration 8

7

6

5

4

3

2

1

XQuery, SPARQL, SQL REST API
Natural language & speech

interface
Cloud and web service

interface

FIG. 3 Cognalytics: a reference architecture for cognitive analytics.

Cognitive Analytics Chapter 5 191



and encryption to ensuring privacy and maintaining data provenance. Not
every cognitive analytics application may need all these data services. How-
ever, the services are generic, relatively low level, and are relevant across a
broad range of cognitive analytics applications. Layer 4 is referred to as the
low-level data services layer.

Layer 5 provides high-level data services. Application developers can
specify workflows using the low-level data services of layer 4 and execute
them. This layer also provides ETL tools for data integration and creates data
warehouses and data marts. Lastly, it provides software tools and libraries for
extracting both features and information from semistructured and unstructured
data. This layer is referred to as the high-level data services layer.

Layer 6 is the core of the Cognalytics reference architecture. It features an
assortment of machine learning algorithms, domain cognitive models, and
inference and reasoning mechanisms including spatial and temporal reasoning.
To facilitate inference and reasoning, several knowledge representation
schemes are provided. The Learning & Adaptation subsystem is responsible
for storing episodic and other types of knowledge and enables learning, adapta-
tion, and evolution. The Query Parsing subsystem is responsible for parsing
queries and identifying subqueries of a query. The Hypothesis Generation &
Validation subsystem is responsible for providing several answers to a problem
and assigning a degree of confidence to each answer. The Results Presenta-
tion & Visualization subsystem provides multimodal interfaces for presenting
results. It also features functionality for interactive exploration of results
through visualization. This layer is referred to as the cognitive analytics layer.

Layer 7 provides access to both interactive users and external systems
through declarative query languages and APIs. Queries can be specified using
natural language text as well as spoken language. This layer also exposes
Cognalytics functions as cloud and web services. These services enable devel-
oping cognitive analytics applications without having to deal with the internal
complexities of the Cognalytics architecture and its implementation. This
layer is referred to as the API layer.

Layer 8 provides two major functions. The System Administration subsys-
tem provides functions for creating users and associating them with roles.
A role specifies a set of predetermined system functions that the role bearer
can execute. The Authorization & Entitlement subsystem is responsible for
authenticating users and ensuring that the users execute only functions for which
they have authorizations. This layer is referred to as the administration layer.

5.2 Implementing Cognalytics

Implementing Cognalytics architecture requires substantial effort. Nume-
rous open source libraries and tools are available to ease the effort. Fur-
thermore, one can select the best library or framework from among the
choices for each subsystem. We describe implementation layer-wise starting

192 SECTION B Complex Analytics and Machine Learning



with the bottom layer. The tools and frameworks we indicate in this section
are open source unless specified otherwise.

5.2.1 Physical Data Layer

PostgreSQL is an open source RDBMS which provides high availability, hor-
izontal scalability, and performance. Replication and auto-sharding features
are also available. It is an ideal choice for storing structured data. As of this
writing, there are over 300 DBMS available for data management and most
of these systems are open source (Solid IT, 2016). A number of NoSQL data-
bases are available for storing text corpora and other unstructured data. Virtu-
oso, Sedna, BaseX, and eXist-db are native XML databases. Database systems
for time series data include InfluxDB, RRDtool, Graphite, and OpenTSDB.
Jena, Virtuoso, and Sesame are database systems for RDF data. For graph data
management, Neo4j, OrientDB, Titan, Virtuoso, and ArangoDB are popular
choices. The reader should consult (Solid IT, 2016) to explore unprecedented
choices for data management.

5.2.2 Physical Hardware Layer

Though one can develop the computing infrastructure for Cognalytics
in-house, it is often economical to use a cloud platform such as Amazon
Web Services. On the other hand, developing an in-house infrastructure has
its advantages. Special compute processors such as neuromorphic chips and
neural network accelerators are available for developing the infrastructure.
For example, True North (Merolla et al., 2014) is a brain-inspired neuro-
morphic chip. It is a self-contained chip with 5.4 billion transistors. True
North features 1 million programmable neurons, 256 million programmable
synapses on the chip, 4096 parallel and distributed cores which are
interconnected via an on-chip mesh network, and 400 million bits of local
on-chip memory. How True North has been used to implement convolutional
networks for classification problems is described in Esser et al. (2016).

A class of microprocessors, called AI accelerators, are emerging to acceler-
ate machine learning algorithms. For example, tensor processing units are
application-specific processors developed for Google’s TensorFlow framework
(TensorFlow, 2016). As of this writing, Nvidia released Tesla P100 GPU chip.
The chip specifically targets machine learning algorithms that employ deep
learning. Tesla P100 features 150 billion transistors on a single chip. DGX-1,
Nvidia’s newest supercomputer, is powered by 8 Tesla P100 GPUs and ships
with deep-learning software preinstalled. Zeroth is a cognitive computing plat-
form developed by Qualcomm. The platform runs on a neural processing unit AI
accelerator chip and deep-learning algorithms are available through anAPI. The
latter is specifically designed for mobile devices to process image and speech
data. Other neurocomputing engines include Chen et al. (2015), Du et al.
(2015), Kim et al. (2015), and Liu et al. (2013).

Cognitive Analytics Chapter 5 193



5.2.3 Hardware Abstractions Layer

This layer provides libraries and frameworks to ease the application develop-
ment process using specialized processors such as neuromorphic chips. The
libraries and frameworks enable application developers to write code without
concerns for the underlying special hardware. The application code is auto-
matically transformed to enable efficient execution. Currently, Hadoop and
Spark are popular choices for realizing this layer. Typically, neuromorphic
and other chip manufactures provide APIs using which applications develop-
ment can be accelerated. As neuromorphic processors’ use becomes more
widespread, we expect more advanced libraries and frameworks.

5.2.4 Low-level Data Services Layer

Data ingestion into a cognitive analytics system is a major task given that the
volume of data is generally petabyte scale and, in some cases, even exabytes.
Sqoop and Flume are two tools in the Hadoop ecosystem for extracting data
from different sources and loading it into the Hadoop Distributed File System.
Sqoop is used for extracting and loading structured data, whereas Flume does
the same for unstructured data.

Many cognitive analytics applications acquire data from diverse data ven-
dors to complement internally generated data. Algorithms and workflows for
data cleaning are required for detecting and eliminating duplicates, resolving
conflicting and inconsistent data, inferring missing data, detecting integrity
constraint violations, and detecting and resolving outliers. Ganti and Sarma
(2013) discuss a few popular approaches for developing data cleaning solutions.
Other works in this direction include Osborne (2012) and McCallum (2012).

Protecting privacy rights is a tremendous challenge. Differential privacy
restricts users’ access to data based on their job roles. Data encryption simpli-
fies data security and privacy protection. Especially in the medical and health
care domains, the notion of personally identifiable information is central.
Some techniques such as data perturbation enable data analytics without
compromising privacy requirements. Data perturbation is a more effective
approach for privacy preservation of electronic health records than deidentifi-
cation and reidentification procedures.

Provenance involves maintaining a history of processing that has been
applied to a data item. The history is maintained in the form of metadata
graphs, which grow very rapidly. Analyzing these graphs is computationally
expensive (Cheah, 2014). Tracking provenance may not be a concern in some
cognitive analytics applications. The Open Provenance Model is a collection
of specifications for implementing provenance. Pentaho Kettle, eBioFlow,
PLIER, and SPADE are tools for implementing provenance.

Given the data volumes, data compression is an important consideration.
Generally, text compression requires lossless algorithms—original data and
data recovered from the compressed data are identical. Image and video data

194 SECTION B Complex Analytics and Machine Learning



may tolerate some data loss when decompressed. RainStor/Teradata, a data-
base specifically developed for big data, seems to provide a compression ratio
of 40:1, and in some cases, the ratio is as high as 100:1.

5.2.5 High-Level Data Services Layer

Tools are required for integrating data from multiple sources. This data fusion
requires normalizing data so that it conforms to a canonical form, identifying
related data about an entity from different sources, specifying transformation
rules, and resolving any conflicts. ETL are a set of tools which originated
from the data warehousing area are used for this purpose. Scriptella, KETL,
Pentaho Data Integrator—Kettle, Talend Open Source Data Integrator, Jasper-
soft ETL, GeoKettle, Jedox, Apatar, CloverETL, and HPCC Systems are
excellent ETL tools.

Pivotal Greenplum (originally Greenplum Database) is a massively parallel
data warehouse. Greenplum branched off from PostgreSQL and added several
data warehousing features. Pivotal Greenplum is uniquely suitable for big data
analytics. Apache MADlib is a library for scalable in-database analytics
(Hellerstein et al., 2012). MADlib provides parallel implementations of
machine learning and mathematical and statistical functions. MADlib cur-
rently supports Pivotal Greenplum, PostgreSQL and Apache HAWQ
(Hadoop Native SQL platform) databases, and data warehouses. Many
NoSQL databases compute analytics efficiently in batch mode using MapRe-
duce frameworks (Gudivada et al., 2016).

Several tools are available for extracting features and information from
unstructured data, primarily natural language text. Apache UIMA project pro-
vides frameworks, tools, and annotators for facilitating the analysis of
unstructured content such as text, audio, and video. Tools from the Stanford
NLP group for solving major computational linguistics problems include sta-
tistical NLP, deep-learning NLP, and rule-based NLP. Other tools for solving
natural language problems include openNLP and GATE. Apache Lucene Core
is a full-featured text search engine Java library. GPText from Greenplum is a
statistical text analysis framework optimized for execution on parallel com-
puting platforms. GPText is also available as a cloud service (Li et al., 2013).

SyntaxNet is an open source neural network framework for developing
natural language understanding systems. Parsey McParseface is a pretrained
SyntaxNet model for parsing the standard English language. TensorFlow is
another software library for machine intelligence. NuPIC is a platform for
cognitive computing, which is based on a theory of neocortex called Hierar-
chical Temporal Memory (HTM).

Weka 3 is a Java software library for data mining. The R project provides
a platform for statistical computing and visualization. OpenCV and ImageJ
are libraries for computer vision tasks. Praat is a tool for speech manipulation,
analysis, and synthesis. openSMILE is another tool for extracting audio fea-
tures in real time.

Cognitive Analytics Chapter 5 195



5.2.6 Cognitive Analytics Layer

This layer brings all components and subsystems together by serving as an
integrator and coordinator. Some of the libraries and tools we indicated in
Section 5.2.5 are also useful for implementing this layer. This is because
the distinction between low- and high-level features is subjective and fluid.
And so is the distinction between data and information, as well as information
and knowledge.

There are several tools for implementing this layer. Their functions are
often complementary and multiple tools are needed. FRED is a machine
reader for the Semantic Web (Presutti et al., 2012). It parses natural language
text in 48 languages and transforms it to linked data. It is available as both a
REST service and a Python library suite. Apache Stanbol is a software stack
and reusable set of components for semantic content management. Federated
knOwledge eXtraction Framework (FOX) is a tool for RDF extraction from
text using ensemble learning (Speck and Ngonga Ngomo, 2014). Named
Entity Recognition and Disambiguation (NERD) is another framework which
unifies 10 popular named entity extractors and compares their performance
(Rizzo and Troncy, 2012). Accurate Online Disambiguation of Named Enti-
ties in Text and Tables (AIDA) is another tool for extracting named entities
from natural language texts (Yosef, 2016). AlchemyAPI provides 12 semantic
text analysis APIs for natural language understanding (Feyisetan et al., 2014).
Machine learning libraries for data mining include PyML, Apache Mahout,
MLib, dlibml, WEKA, and scikit-learn.

There are several options for implementing the Results Presentation &
Visualization subsystem. Results presentation is tied to web application devel-
opment frameworks used for implementing Cognalytics. User interface
development frameworks such as Bootstrap, Foundation, GroundworkCSS,
Gumby, HTML KickStart, IVORY, and Kube provide rich functionality for
results presentation and navigating the application. D3, chart, dygraphs,
FusionCharts, and Highcharts are libraries for visualization which run in a
web browser.

5.2.7 API Layer

Cognalytics provides several APIs for interaction with the outside world. SQL,
SPARQL, and XQuery are standard languages for querying RDBMS, RDF, and
native XML databases declaratively. Representational State Transfer (REST) is
a minimal overhead Hypertext Transfer Protocol (HTTP) API for interacting
with Cognalytics system. REST uses four HTTP methods GET (reading data),
POST (writing data), PUT (updating data), and DELETE (removing data). Nat-
ural language and query interfaces provide a natural means for interacting with
the system. The first two classes of interfaces primarily serve the needs of inter-
active users who pose structured queries, whereas the last class enables a more
powerful and flexible way to submit queries.

196 SECTION B Complex Analytics and Machine Learning



5.2.8 Administration Layer

System administration functions include user management, system monitor-
ing, backup and recovery, and access control. System monitoring, backup,
and recovery functions are typically integrated into an organization-wide
application. User management functions include user creation and assigning
roles to users. Single sign-on (SSO) is a user authentication service that per-
mits the same login ID and password to access multiple systems across an
organization. Often software libraries combine authentication and authoriza-
tion functions into one component.

Shibboleth is an open source software which provides federated identity
solution. It enables users to connect to applications within and outside an
organization using SSO. Apache Shiro is a Java security framework for inte-
grating authentication, authorization, cryptography, and session management
functions into applications. Other solutions include OpenDJ, OpenIDM,
OpenAM, and DACS.

6 COGNITIVE ANALYTICS APPLICATIONS

Though data warehouses-driven analytics has been in existence for over
28 years (Devlin and Murphy, 1988), only recently has there been tremendous
thrust on incorporating unstructured data into data analytics. The power of
cognitive analytics stems from the complementary and synergistic value het-
erogeneous data sources bring. Cognitive analytics applications range from
improving student engagement and developing intervention measures, devel-
oping more effective Intelligent Tutoring Systems (ITS) to developing cogni-
tive assistants and personalized learning environments.

6.1 Learning Analytics

EDM and LA are two areas in the education and learning domain that draw
upon data analytics. EDM can be viewed as descriptive analytics. The current
EDM systems are tied to course management systems (CMS) such as Black-
board and Moodle, which provide structured data for analytics. Such data
includes the number of CMS logins, time spent on each learning activity,
and test scores. Based on this data, students are classified into various groups
and appropriate intervention measures are designed for each group. There is
no human involvement in this process.

LA takes EDM a step further. LA combines EDM with human judgment
(Siemens, 2012). It is best viewed as prescriptive analytics. It uses machine
learning algorithm techniques to reveal hidden patterns and generate action-
able intelligence. The latter is used to design personalized intervention mea-
sures. In addition to structured data, LA includes semistructured data such
as emails and discussion board postings into analytics. Recent efforts in LA
aim to propel both EDM and LA into the realm of predictive analytics and
beyond into cognitive analytics.

Cognitive Analytics Chapter 5 197



6.2 Personalized Learning

Personalized learning can be defined from multiple perspectives. One
approach is to allow learners to proceed at their own pace. The order in which
topics are learned by one user may be different from the order of topics for
another learner. In other words, learners are not bound to a lock-step synchro-
nization scheme. They are free to explore topics on a subject in any order,
only constrained by the prerequisite dependencies. Another aspect is auto-
mated generation of assessments, providing contextualized and incremental
scaffolding, and supplying immediate feedback on assessments. Descriptive
analytics will help to suggest next topics to pursue to the learner.
A personalized learning system, called ISPeL, which is based on the above
principles is described in Gudivada (2016). How ISPeL can be extended to
incorporate cognitive analytics is also described.

6.3 Cognitive Businesses

This is perhaps the single domain that has been deeply impacted by cognitive
analytics already. Cognitive businesses are those that use cognitive analytics
for both operational management and strategic decision making. The primary
thrust is on extracting information from natural language texts and combining
it with structured data. Cognitive analytics uses are vast and varied. It has
been used to improve workflow processes, detecting fraud before it happens,
ensuring regulatory compliance, repurposing content, and knowledge manage-
ment. Technology companies such as IBM, Nvidia, Google, Microsoft, Linke-
dIn, Facebook, and Netflix have already incorporated cognitive analytics into
their software products.

Multiple Sclerosis Association of America uses cognitive analytics and
natural language understanding to return evidence-based answers to clini-
cians’ complex questions. To find an answer, their system parses a corpus
of 1500 question-and-answer pairs and also incorporates content from medical
resources. Baylor College of Medicine used IBM Watson to develop Baylor
Knowledge Integration Toolkit (KnIT). The latter’s goal is to help researchers
by discovering patterns in the research literature. KnIT helped researchers
identify proteins that modify p53, a protein related to many cancers. The sys-
tem analyzed 70,000 scientific articles on p53 to predict other proteins that
turn on/off of p53’s activity. This finding was accomplished in a matter of
weeks, which would have taken researchers years without IBM Watson.

6.4 BCI and Assistive Technologies

The human brain is perhaps the most complex system in terms of its structure
and function. Functional magnetic resonance imaging and electroencephalo-
gram are two functional brain imaging techniques that help to establish an
association between brain and behavior. BCI is a new technology that

198 SECTION B Complex Analytics and Machine Learning



provides a direct communication pathway between a wired brain and an exter-
nal device such as a robot or wheel chair. Cognitive analytics offers an excit-
ing opportunity to develop new assistive technologies using BCI. The study
reported in Harnarinesingh and Syan (2013) discusses how a three-axis indus-
trial robot was used to generate writing. The next logical step is to investigate
connecting the brain and the robot using BCI. This is just one example, and
cognitive analytics and BCI have the potential to help develop many assistive
technologies to help physically impaired people.

7 CURRENT TRENDS AND RESEARCH ISSUES

Cognitive analytics will be increasingly driven by special computing proces-
sors that mimic the neural computations of the brain. Advances in neurosci-
ence and cognitive science are critical for propelling neuromorphic
computing further. It is ironic that computing discipline itself will be enabling
new discoveries in these sciences. Rapid advances in big data will exacerbate
the need to move more and more processing into hardware to meet perfor-
mance at scale requirements.

There is a mismatch between the current programming languages and soft-
ware development environments with respect to neuromorphic architectures
powered by neurosynaptic cores. IBM has already begun designing simulators
and programming environments including a new programming language and
associated libraries for the True North processor. Nvidia, Google, and Face-
book have similar projects in the pipeline.

Cognitive computing and cognitive analytics will play a transformational
role in the Internet of Things (IoT) domain. Embedded analytics in general
and cognitive IoT in particular will endow wireless sensors and cameras to
perform intelligent processing at the source. This has multiple benefits includ-
ing improved data quality, adaptive sampling to reduce the volume of stream-
ing sensor data, and increased opportunities for a community of sensors to
work as collaborative agents. Another use for embedded analytics is to inte-
grate discovered actionable insights into products that would benefit from
such insights. More and more future applications will have embedded analyt-
ics, which will enable them to deliver additional value. For example, wearable
medical devices will not only be able to generate timely alerts but also pro-
vide contextualized information about how to react to the alerts.

Current research in both feature and information extraction from unstruc-
tured data is primarily focused on natural language text. Recently, revived inter-
est in neural computing and in particular convolutional networks has begun to
yield new algorithms and approaches to image classification and object recog-
nition problems. Similar emphasis is needed for speech and video data.

It is hypothesized that the human brain uses statistical learning. Creating
neural models to simulate the brain is not easy given the current computing
processors. The emergence of neuromorphic chips offers hope and excitement.

Cognitive Analytics Chapter 5 199



Currently, neuromorphic chips can simulate neurons in the order of millions
and synaptic connections in the order of billions. To propel cognitive analytics
to the next stage, we need neuromorphic processors that can simulate neurons
in the order of billions and synaptic connections in the order of trillions.

It is widely believed that our brain uses statistical learning. Creating neural
models to simulate a brain is not easy. Current artificial neural models: nodes
in the order of millions and connections in the order of billions. What we want
is nodes in the order of billions and connections in the order of trillions.

Cognitive analytics will play an increasingly critical role in smart cities.
Insights will help in planning evacuation routes, prioritize resource allocations
in implementing disaster relief, optimize energy usage, promote public safety,
and prevent maintenance on city infrastructure. Personalized learning will be
another beneficiary of cognitive analytics. However, significant research is
needed in these areas to reap the benefits.

8 CONCLUSIONS

In this chapter, we defined analytics and traced its evolution. Cognitive ana-
lytics is pursued from two complementary perspectives: computer science,
and cognitive and neurosciences. This chapter focused primarily on the com-
puter science perspective. We introduced learning types and discussed several
classes of machine learning algorithms. We proposed a reference architecture
for cognitive analytics and indicated ways to implement it. We described a
few cognitive analytics applications and indicated current trends and future
research in cognitive analytics. Cognitive computing and analytics have
immense potential to contribute to a new generation of applications for which
learning is intrinsic and communication is through spoken and written natural
language. It is a proven technology which is searching for applications.

Cognitive computing and analytics are more than just the AI. For example,
AI is 1 of the 28 APIs provided by the IBM Watson. Cognitive computing in
general and cognitive analytics in particular exacerbate data security, privacy,
and provenance issues. There are also practical concerns with cognitive
analytics. Would this technology lead to significant unemployment? Would
it only enable people to do their jobs better or totally replace them? On a phil-
osophical level, how far can we advance cognitive technologies? Will they
advance to a level at which they surpass human intelligence? If so, what are
its implications to individuals as well as the society at large?

The computing industry has never been before invested this level of effort
and resources into machine learning research. The availability of inexpensive,
cloud-based computing power, and the ubiquity of big data are the catalysts
for the transformational advances we are witnessing in machine learning
and cognitive computing. The synergistic confluence of computing, neurosci-
ence, and cognitive science is poised for groundbreaking discoveries and
compelling cognitive applications in the years ahead.

200 SECTION B Complex Analytics and Machine Learning



REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A.,

Dean, J., Devin, M., et al., 2016. TensorFlow: large-scale machine learning on heterogeneous

distributed systems. ArXiv preprint arXiv:1603.04467.

Aizerman, A., Braverman, E.M., Rozoner, L., 1964. Theoretical foundations of the potential func-

tion method in pattern recognition learning. Autom. Remote Control. 25, 821–837.
Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide

susceptibility mapping in the Kakuda-Yahiko mountains, central Japan. Geomorphology

65 (1), 15–31.
Battiti, R., Brunato, M., Mascia, F., 2008. Reactive Search and Intelligent Optimization. Operations

Research/Computer Science Interfaces, vol. 45. Springer Science & Business Media, Berlin,

Germany.

Bell, J., 2014. Machine Learning: Hands-on for Developers and Technical Professionals. John

Wiley & Sons, Hoboken, NJ.

Bishop, C.M., 2006. Pattern recognition and machine learning. Information Science and Statistics.

Springer, New York, NY.

Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers.

In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM,

New York, NY, pp. 144–152.
Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and Regression Trees.

CRC Press, Boca Raton, FL.

Cai, C.Z., Han, L.Y., Ji, Z.L., Chen, X., Chen, Y.Z., 2003. SVM-Prot: web-based support vector

machine software for functional classification of a protein from its primary sequence. Nucleic

Acids Res. 31 (13), 3692–3697.
Chakraborty, A., Harrison, B., Yang, P., Roberts, D., St. Amant, R., 2014. Exploring key-level

analytics for computational modeling of typing behavior. In: Proceedings of the 2014 Sympo-

sium and Bootcamp on the Science of Security, Raleigh, North Carolina, USA, HotSoS’14.

ACM, New York, NY, pp. 34:1–34:2. http://doi.acm.org/10.1145/2600176.2600210.

Chang, M.-W., Yih, W.-T., Meek, C., 2008. Partitioned logistic regression for spam filtering.

In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining. ACM, New York, NY, pp. 97–105.
Cheah, Y.-W., 2014. Quality, retrieval and analysis of provenance in large-scale data. Ph.D. thesis,

Indiana University, Indianapolis, IN. Plale, Beth.

Chen, P.-Y., Kadetotad, D., Xu, Z., Mohanty, A., Lin, B., Ye, J., Vrudhula, S., Seo, J.-S., Cao, Y.,

Yu, S., 2015. Technology-design co-optimization of resistive cross-point array for accelerat-

ing learning algorithms on chip. In: Proceedings of the 2015 Design, Automation & Test in

Europe Conference & Exhibition, DATE’15. EDA Consortium, San Jose, CA, pp. 854–859.
Devlin, B.A., Murphy, P.T., 1988. An architecture for a business and information system. IBM

Syst. J. 27 (1), 60–80.
Du, Z., Ben-Dayan Rubin, D.D., Chen, Y., He, L., Chen, T., Zhang, L., Wu, C., Temam, O., 2015.

Neuromorphic accelerators: a comparison between neuroscience and machine-learning

approaches. In: Proceedings of the 48th International Symposium on Microarchitecture,

MICRO-48. ACM, New York, NY, pp. 494–507.
Esser, S.K., Merolla, P.A., Arthur, J.V., Cassidy, A.S., Appuswamy, R., Andreopoulos, A.,

Berg, D.J., McKinstry, J.L., Melano, T., Barch, D.R., Nolfo, C.D., Datta, P., Amir, A.,

Taba, B., Flickner, M.D., Modha, D.S., 2016. Convolutional networks for fast, energy-

Cognitive Analytics Chapter 5 201

http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0010
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0010
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0010
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0015
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0015
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0020
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0020
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0020
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0025
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0025
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0025
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0030
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0030
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0035
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0035
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0040
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0040
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0040
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0045
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0050
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0050
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0055
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0055
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0055
http://doi.acm.org/10.1145/2600176.2600210
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0065
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0065
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0065
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0070
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0070
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0070
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0070
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0075
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0075
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0080
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0080
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0080
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0080


efficient neuromorphic computing. Comput. Res. Reposit. abs/1603.08270. http://arxiv.org/

abs/1603.08270.

Feng, X., Kumar, A., Recht, B., R!e, C., 2012. Towards a unified architecture for in-RDBMS ana-

lytics. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management

of Data, SIGMOD’12. ACM, New York, NY, pp. 325–336. http://doi.acm.org/

10.1145/2213836.2213874.

Feyisetan, O., Simperl, E., Tinati, R., Luczak-Roesch, M., Shadbolt, N., 2014. Quick-and-clean

extraction of linked data entities from microblogs. In: Proceedings of the 10th International

Conference on Semantic Systems, SEM ’14. ACM, New York, NY, pp. 5–12.
Freund, Y., Schapire, R.E., 1995. A decision-theoretic generalization of on-line learning and an

application to boosting. In: European Conference on Computational Learning Theory.

Springer, Berlin, Germany, pp. 23–37.
Freund, Y., Schapire, R., Abe, N., 1999. A short introduction to boosting. J. Jpn. Soc. Artif. Intell.

14 (771–780), 1612.
Ganti, V., Sarma, A.D., 2013. Data Cleaning: A Practical Perspective. Synthesis Lectures on Data

Management, Morgan & Claypool Publishers, Williston, VT.

Geman, S., Bienenstock, E., Doursat, R., 1992. Neural networks and the bias/variance dilemma.

Neural Comput. 4 (1), 1–58.
Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V., 2014. Multi-digit number recognition

from street view imagery using deep convolutional neural networks. https://arxiv.org/pdf/

1312.6082.pdf. arXiv.org.

Gudivada, V.N., 2016. Cognitive analytics driven personalized learning. Educ. Technol. Mag.

Special Issue on Big Data in E-Learning, Educational Technology Publications, Englewood

Cliffs, NJ, in press.

Gudivada, V., Baeza-Yates, R., Raghavan, V., 2015a. Big data: promises and problems. IEEE

Comput. 48 (3), 20–23.
Gudivada, V., Rao, D., Raghavan, V., 2015b. Big data driven natural language processing

research and applications. In: Govindaraju, V., Raghavan, V., Rao, C.R. (Eds.), Big Data

Analytics, Handbook of Statistics. vol. 33. Elsevier, Amsterdam, The Netherlands,

pp. 203–238.
Gudivada, V., Rao, D., Raghavan, V., 2016. Renaissance in database management: navigating the

landscape of candidate systems. IEEE Comput. 49 (4), 31–42.
Harnarinesingh, R.E.S., Syan, C.S., 2013. Investigating the feasibility of a robot-based writing

agent. In: Proceedings of the Second International Conference on Innovative Computing

and Cloud Computing, ICCC’13. ACM, New York, NY, p. 60:60:65. 60.

Heckerman, D., Mamdani, A., Wellman, M.P., 1995. Real-world applications of Bayesian net-

works. Commun. ACM 38 (3), 24–26.
Hellerstein, J.M., R!e, C., Schoppmann, F., Wang, D.Z., Fratkin, E., Gorajek, A., Ng, K.S., Welton, C.,

Feng, X., Li, K., Kumar, A., 2012. The MADlib analytics library: or MAD skills, the SQL. Proc.

VLDB Endow. 5 (12), 1700–1711. http://dx.doi.org/10.14778/2367502. 2367510.
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke, V.,

Nguyen, P., Sainath, T.N., et al., 2012. Deep neural networks for acoustic modeling in speech

recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29 (6),

82–97.
Ho, T.K., 1995. Random decision forests. Proceedings of the Third International Conference on

Document Analysis and Recognition, vol. 1, pp. 278–282.
Honorio, J., Ortiz, L., 2015. Learning the structure and parameters of large-population graphical

games from behavioral data. J. Mach. Learn. Res. 16, 1157–1210.

202 SECTION B Complex Analytics and Machine Learning

http://arxiv.org/abs/1603.08270
http://arxiv.org/abs/1603.08270
http://doi.acm.org/10.1145/2213836.2213874
http://doi.acm.org/10.1145/2213836.2213874
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0095
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0095
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0095
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0100
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0100
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0100
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0105
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0105
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0110
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0110
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0115
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0115
https://arxiv.org/pdf/1312.6082.pdf
https://arxiv.org/pdf/1312.6082.pdf
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0125
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0125
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0125
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0130
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0130
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0135
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0135
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0135
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0135
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0140
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0140
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0145
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0145
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0145
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0150
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0150
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0160
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0160
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0160
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0160
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0165
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0165
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0170
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0170


Irfan, M.T., Ortiz, L.E., 2011. A game-theoretic approach to influence in networks.

In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI’11.

AAAI Press, San Francisco, CA, pp. 688–694.
Irfan, M.T., Ortiz, L.E., 2014. On influence, stable behavior, and the most influential individuals

in networks: a game-theoretic approach. Artif. Intell. 215, 79–119.
Jurafsky, D., Martin, J.H., 2009. Speech and Language Processing: An Introduction to Natural

Language Processing, Computational Linguistics, and Speech Recognition, second ed.,

Pearson Prentice Hall, Upper Saddle River, NJ.

Kim, Y., Zhang, Y., Li, P., 2015. A reconfigurable digital neuromorphic processor with memris-

tive synaptic crossbar for cognitive computing. ACM J. Emerg. Technol. Comput. Syst.

11 (4), 38:1–38:25. http://dx.doi.org/10.1145/2700234.
Koller, D., Friedman, N., 2009. Probabilistic Graphical Models: Principles and Techniques. MIT

Press, Cambridge, MA.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems. Neural Information

Processing Society (NIPS), Inc., La Jolla, CA, pp. 1097–1105.
Laitinen, E.K., Laitinen, T., 2001. Bankruptcy prediction: application of the Taylor’s expansion in

logistic regression. Int. Rev. Financ. Anal. 9 (4), 327–349.
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., 2015. Human-level concept learning through

probabilistic program induction. Science 350 (6266), 1332–1338. http://dx.doi.org/10.1126/
science.aab3050. http://science.sciencemag.org/content/350/6266/1332.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444. http://dx.
doi.org/10.1038/nature14539.

Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibil-

ity mapping using GIS and remote sensing data. Int. J. Remote Sens. 26 (7), 1477–1491.
Li, K., Grant, C., Wang, D.Z., Khatri, S., Chitouras, G., 2013. GPText: greenplum parallel statistical

text analysis framework. In: Proceedings of the SecondWorkshop onDataAnalytics in the Cloud,

DanaC’13. ACM, New York, NY, pp. 31–35. http://doi.acm.org/10.1145/2486767.2486774.

Liu, B., Hu, M., Li, H., Chen, Y., Xue, C.J., 2013. Bio-inspired ultra lower-power neuromorphic

computing engine for embedded systems. In: Proceedings of the Ninth IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthesis, CODES +

ISSS’13. IEEE Press, Piscataway, NJ, pp. 23:1–23:1.
Maher, J.J., Sen, T.K., 1997. Predicting bond ratings using neural networks: a comparison with

logistic regression. Intell. Syst. Acc. Finan. Manag. 6 (1), 59–72.
McCallum, Q.E., 2012. Bad Data Handbook: Cleaning up the Data so You Can Get Back to

Work. O’Reilly Media, Sebastopol, CA.

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity.

Bull. Math. Biophys. 5 (4), 115–133.
Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L.,

Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B.,

Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S., 2014. A million spiking-

neuron integrated circuit with a scalable communication network and interface. Science

345 (6197), 668–673. http://dx.doi.org/10.1126/science.1254642.
Mittal, A., 2007. Bayesian Network Technologies: Applications and Graphical Models: Applica-

tions and Graphical Models. IGI Global, Hershey, PA.

Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA.

Nadkarni, P.M., Ohno-Machado, L., Chapman, W.W., 2011. Natural language processing: an

introduction. J. Am. Med. Inform. Assoc. 18 (5), 544–551.

Cognitive Analytics Chapter 5 203

http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0175
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0175
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0175
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0180
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0180
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf9000
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf9000
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf9000
http://dx.doi.org/10.1145/2700234
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0190
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0190
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0195
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0195
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0195
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0200
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0200
http://dx.doi.org/10.1126/science.aab3050
http://dx.doi.org/10.1126/science.aab3050
http://science.sciencemag.org/content/350/6266/1332
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0215
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0215
http://doi.acm.org/10.1145/2486767.2486774
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0225
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0225
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0225
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0225
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0230
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0230
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0240
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0240
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0245
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0245
http://dx.doi.org/10.1126/science.1254642
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0255
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0255
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0260
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0265
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0265


Osborne, J.W., 2012. Best Practices in Data Cleaning: A Complete Guide to Everything You

Need to Do Before and After Collecting Your Data. SAGE Publications, Thousand Oaks, CA.

Polikar, R., 2009. Ensemble learning. Scholarpedia 4 (1), 2776. http://www.scholarpedia.org/

article/Ensemble_learning.

Presutti, V., Draicchio, F., Gangemi, A., 2012. Knowledge extraction based on discourse repre-

sentation theory and linguistic frames. In: Proceedings of the 18th International Conference

on Knowledge Engineering and Knowledge Management, Galway City, Ireland, EKAW’12.

Scite Press, Setúbal, Portugal, pp. 114–129.
Quinlan, J.R., 1986. Induction of decision trees. Mach. learn. 1 (1), 81–106.
Quinlan, J.R., 2014. C4.5: Programs for Machine Learning. Elsevier, Amsterdam,

The Netherlands.

Quinlan, J.R., 2016. C5.0: Programs for Machine Learning. RuleQuest Research, Empire Bay.

https://www.rulequest.com.

Rampasek, L., Goldenberg, A., 2016. TensorFlow: biology’s gateway to deep learning? Cell Syst.

2 (1), 12–14.
Rizzo, G., Troncy, R., 2012. NERD: a framework for unifying named entity recognition and dis-

ambiguation extraction tools. In: Proceedings of the Demonstrations at the 13th Conference

of the European Chapter of the Association for Computational Linguistics, EACL’12.

Association for Computational Linguistics, Stroudsburg, PA, pp. 73–76. http://dl.acm.org/

citation.cfm?id¼2380921.2380936.

Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organiza-

tion in the brain. Psychol. Rev. 65 (6), 386.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet large scale visual recog-

nition challenge. Int. J. Comput. Vis. 115 (3), 211–252. http://dx.doi.org/10.1007/ s11263-
015-0816-y.

Sch€olkopf, B., Burges, C.J., 1999. Advances in Kernel Methods: Support Vector Learning. MIT

Press, Cambridge, MA.

Settles, B., 2009. Active learning literature survey. University of Wisconsin–Madison. Computer

Sciences Technical Report 1648.

Shalev-Shwartz, S., Ben-David, S., 2014. Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press, Cambridge.

Siemens, G., 2012. Learning analytics: envisioning a research discipline and a domain of practice.

In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge,

Vancouver, British Columbia, Canada. ACM, New York, NY, pp. 4–8.
Solid, I.T., 2016. Knowledge base of relational and NoSQL database management systems. http://

db-engines.com/en/ranking. Retrieved: July 2016.

Speck, R., Ngonga Ngomo, A.-C., 2014. Ensemble learning for named entity recognition.

In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D.,

Groth, P., Noy, N., Janowicz, K., Goble, C. (Eds.), The Semantic Web—ISWC 2014. Lecture

Notes in Computer Science, vol. 8796. Springer, Berlin, Germany, pp. 519–534. http://svn.
aksw.org/papers/2014/ISWC_EL4NER/public.pdf.

Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks.

In: Advances in Neural Information Processing Systems. Neural Information Processing

Systems Foundation, Inc., La Jolla, CA, pp. 3104–3112.
Taigman, Y., Yang, M., Ranzato, M., Wolf, L., 2014. DeepFace: closing the gap to human-level

performance in face verification. In: Proceedings of the 2014 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR’14. IEEE Computer Society, Washington, DC,

pp. 1701–1708. http://dx.doi.org/10.1109/CVPR.2014.220.

204 SECTION B Complex Analytics and Machine Learning

http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0270
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0270
http://www.scholarpedia.org/article/Ensemble_learning
http://www.scholarpedia.org/article/Ensemble_learning
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0280
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0280
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0280
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0280
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0285
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0290
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0290
https://www.rulequest.com
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0300
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0300
http://dl.acm.org/citation.cfm?id=2380921.2380936
http://dl.acm.org/citation.cfm?id=2380921.2380936
http://dl.acm.org/citation.cfm?id=2380921.2380936
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0310
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0310
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0320
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0320
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0320
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0325
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0325
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0330
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0330
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0335
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0335
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0335
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://svn.aksw.org/papers/2014/ISWC_EL4NER/public.pdf
http://svn.aksw.org/papers/2014/ISWC_EL4NER/public.pdf
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0350
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0350
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0350
http://dx.doi.org/10.1109/CVPR.2014.220


TensorFlow, 2016. An open source software library for numerical computation using data flow

graphs. https://www.tensorflow.org/.

Tong, S., Koller, D., 2001. Support vector machine active learning with applications to text clas-

sification. J. Mach. Learn. Res. 2, 45–66.
Weber, P., Medina-Oliva, G., Simon, C., Iung, B., 2012. Overview on Bayesian networks applica-

tions for dependability, risk analysis and maintenance areas. Eng. Appl. Artif. Intell. 25 (4),

671–682.
Werbos, P., 1974. Beyond regression: new tools for prediction and analysis in the behavioral

sciences. Ph.D. thesis, Harvard University, Cambridge, MA.

Yosef, M.A., 2016. U-AIDA: a customizable system for named entity recognition, classification,

and disambiguation. Ph.D. thesis, Saarland University.

Zou, M., Conzen, S.D., 2005. A new dynamic Bayesian network (DBN) approach for identifying

gene regulatory networks from time course microarray data. Bioinformatics 21 (1), 71–79.

Cognitive Analytics Chapter 5 205

https://www.tensorflow.org/
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0365
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0365
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0370
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0370
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0370
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0375
http://refhub.elsevier.com/S0169-7161(16)30051-7/rf0375

